
Photo by Andrew Neel on Unsplash

Motivation
This blog regroups all the Pandas and Python tricks & tips I share on a basis on my
LinkedIn page. I have decided to centralize them into a single blog to help you make
the most out of your learning process by easily finding what you are looking for.

The content is divided into two main sections:

Pandas tricks & tips are related to only Pandas.

Python tricks & tips related to Python.

If you are more of a video person, you can start watching my series about these
tricks on my YouTube channel for more interactivity. Each video covers about two or
three tricks at a time.

…

Pandas tricks & tips
This section provides a list of all the tricks

1. 𝗖𝗿𝗲𝗮𝘁𝗲 𝗮 𝗻𝗲𝘄 𝗰𝗼𝗹𝘂𝗺𝗻 𝗳𝗿𝗼𝗺 𝗺𝘂𝗹𝘁𝗶𝗽𝗹𝗲 𝗰𝗼𝗹𝘂𝗺𝗻𝘀 𝗶𝗻 𝘆𝗼𝘂𝗿 𝗱𝗮𝘁𝗮𝗳𝗿𝗮𝗺𝗲.

2 Pandas Tricks You Might Not Be Aware Of2 Pandas Tricks You Might Not Be Aware Of
292 4

https://unsplash.com/@andrewtneel
https://unsplash.com/photos/cckf4TsHAuw
https://www.linkedin.com/in/zoumana-keita/
https://www.youtube.com/watch?v=pvNvgW0USZU
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Ftowards-data-science%2F1b1e05b7d93a&operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fpandas-and-python-tips-and-tricks-for-data-science-and-data-analysis-1b1e05b7d93a&user=Zoumana+Keita&userId=e6ae785a30d&source=-----1b1e05b7d93a---------------------clap_footer-----------

Performing simple arithmetic tasks such as creating a new column as the sum of
two other columns can be straightforward.

🤔 But, what if you want to implement a more complex function and use it as the
logic behind column creation? Here is where things can get a bit challenging.

Guess what…

✅ 𝙖𝙥𝙥𝙡𝙮 and 𝙡𝙖𝙢𝙗𝙙𝙖 can help you easily apply whatever logic to your columns using
the following format:

𝙙𝙛[𝙣𝙚𝙬_𝙘𝙤𝙡] = 𝙙𝙛.𝙖𝙥𝙥𝙡𝙮(𝙡𝙖𝙢𝙗𝙙𝙖 𝙧𝙤𝙬: 𝙛𝙪𝙣𝙘(𝙧𝙤𝙬), 𝙖𝙭𝙞𝙨=1)

where:

➡ 𝙙𝙛 is your dataframe.

➡ 𝙧𝙤𝙬 will correspond to each row in your data frame.

➡ 𝙛𝙪𝙣𝙘 is the function you want to apply to your data frame.

➡ 𝙖𝙭𝙞𝙨=1 to apply the function to each row in your data frame.

💡 Below is an illustration.

The `candidate_info` function combines each candidate’s information to create a
single description column about that candidate.

view rawpandas_tricks_.multiple_cols.py hosted with ❤ by GitHub

1 import pandas as pd

2

3 # Create the dataframe

4 candidates= {

5 'Name':["Aida","Mamadou","Ismael","Aicha","Fatou", "Khalil"],

6 'Degree':['Master','Master','Bachelor', "PhD", "Master", "PhD"],

7 'From':["Abidjan","Dakar","Bamako", "Abidjan","Konakry", "Lomé"],

8 'Years_exp': [2, 3, 0, 5, 4, 3],

9 'From_office(min)': [120, 95, 75, 80, 100, 34]

10 }

11 candidates_df = pd.DataFrame(candidates)

12

13 """

14 ----------------My custom function-------------------

15 """

16 def candidate_info(row):

17

18 # Select columns of interest

19 name = row.Name

20 is_from = row.From

21 year_exp = row.Years_exp

22 degree = row.Degree

23 from_office = row["From_office(min)"]

24

25 # Generate the description from previous variables

26 info = f"""{name} from {is_from} holds a {degree} degree

27 with {year_exp} year(s) experience

28 and lives {from_office} from the office"""

29

30 return info

31

32 """

33 -------Application of the function to the data ------

34 """

35 candidates_df["Description"] = candidates_df.apply(lambda row: candidate_info(row),
axis=1)

https://gist.github.com/keitazoumana/07ad1c72dda94cb93a32eae061dce985/raw/9c329096f5e90a25ff314c13e6df1776865a9436/pandas_tricks_.multiple_cols.py
https://gist.github.com/keitazoumana/07ad1c72dda94cb93a32eae061dce985#file-pandas_tricks_-multiple_cols-py
https://github.com/

Result of Pandas apply and lambda (Image by Author)

2. Convert categorical data into numerical ones

This process mainly can occur in the feature engineering phase. Some of its benefits
are:

the identification of outliers, invalid, and missing values in the data.

reduction of the chance of overfitting by creating more robust models.

➡ Use these two functions from Pandas, depending on your need. Examples are
provided in the image below.

1️⃣ .𝙘𝙪𝙩() to specifically define your bin edges.

𝙎𝙘𝙚𝙣𝙖𝙧𝙞𝙤

Categorize candidates by expertise with respect to their number of experience,
where:

Entry level: 0–1 year

Mid-level: 2–3 years

Senior level: 4–5 years

view rawcut_scenario.py hosted with ❤ by GitHub

1 seniority = ['Entry level', 'Mid level', 'Senior level']

2 seniority_bins = [0, 1, 3, 5]

3 candidates_df['Seniority'] = pd.cut(candidates_df['Years_exp'],

4 bins=seniority_bins,

5 labels=seniority,

6 include_lowest=True)

7

8 candidates_df

https://gist.github.com/keitazoumana/6af0241aad20d60cadc6b221264b7e46/raw/f91c7fba344f26915f00ba08b9b9b5015c7ff80c/cut_scenario.py
https://gist.github.com/keitazoumana/6af0241aad20d60cadc6b221264b7e46#file-cut_scenario-py
https://github.com/

Result of the .cut function (Image by Author)

2️⃣ .𝙦𝙘𝙪𝙩() to divide your data into equal-sized bins.
It uses the underlying percentiles of the distribution of the data, rather than the
edges of the bins.

𝙎𝙘𝙚𝙣𝙖𝙧𝙞𝙤: categorize the commute time of the candidates into 𝙜𝙤𝙤𝙙, 𝙖𝙘𝙘𝙚𝙥𝙩𝙖𝙗𝙡𝙚, or 𝙩𝙤𝙤

𝙡𝙤𝙣𝙜.

Result of the .qcut function (Image by Author)

𝙆𝙚𝙚𝙥 𝙞𝙣 𝙢𝙞𝙣𝙙 💡

view rawqcut_scenario.py hosted with ❤ by GitHub

1 commute_time_labels = ["good", "acceptable", "too long"]

2 candidates_df["Commute_level"] = pd.qcut(

3 candidates_df["From_office(min)"],

4 q = 3,

5 labels=commute_time_labels

6)

7 candidates_df

https://gist.github.com/keitazoumana/194f349c323b714a982eb53778aeb41b/raw/31d138d475ee5d8e6826a131f42f6d43d0fae5a4/qcut_scenario.py
https://gist.github.com/keitazoumana/194f349c323b714a982eb53778aeb41b#file-qcut_scenario-py
https://github.com/

When using .𝙘𝙪𝙩(): a number of bins = number of labels + 1.

When using .𝙦𝙘𝙪𝙩(): a number of bins = number of labels.

With .𝙘𝙪𝙩(): set 𝙞𝙣𝙘𝙡𝙪𝙙𝙚_𝙡𝙤𝙬𝙚𝙨𝙩=𝙏𝙧𝙪𝙚, otherwise, the lowest value will be
converted to NaN.

3. Select rows from a Pandas Dataframe based on column(s) values

➡ use .𝙦𝙪𝙚𝙧𝙮() function by specifying the filter condition.

➡ the filter expression can contain any operators (<, >, ==, !=, etc.)

➡ use the @̷ sign to use a variable in the expression.

view rawfilter_examples.py hosted with ❤ by GitHub

1 # Get all the candidates with a Master degree

2 ms_candidates = candidates_df.query("Degree == 'Master'")

3

4 # Get non bachelor candidates

5 no_bs_candidates = candidates_df.query("Degree != 'Bachelor'")

6

7 # Get values from list

8 list_locations = ["Abidjan", "Dakar"]

9 candiates = candidates_df.query("From in @list_locations")

https://gist.github.com/keitazoumana/a7e7404afe62eb15cf6cef14724377da/raw/023d676bb437f8956b63e5404e4f237907fb62a0/filter_examples.py
https://gist.github.com/keitazoumana/a7e7404afe62eb15cf6cef14724377da#file-filter_examples-py
https://github.com/

Select rows from a Pandas Dataframe based on column(s) values (Image by Author)

4. Deal with zip files

Sometimes it can be efficient to read and write .zip files without extracting them
from your local disk. Below is an illustration.

5. Select 𝗮 𝘀𝘂𝗯𝘀𝗲𝘁 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗣𝗮𝗻𝗱𝗮𝘀 𝗱𝗮𝘁𝗮𝗳𝗿𝗮𝗺𝗲 𝘄𝗶𝘁𝗵 𝘀𝗽𝗲𝗰𝗶𝗳𝗶𝗰 𝗰𝗼𝗹𝘂𝗺𝗻 𝘁𝘆𝗽𝗲𝘀

You can use the 𝙨𝙚𝙡𝙚𝙘𝙩_𝙙𝙩𝙮𝙥𝙚𝙨 function. It takes two main parameters: 𝚒𝚗𝚌𝚕𝚞𝚍𝚎 𝚊𝚗𝚍

𝚎𝚡𝚌𝚕𝚞𝚍𝚎.

𝚍𝚏.𝚜𝚎𝚕𝚎𝚌𝚝_𝚍𝚝𝚢𝚙𝚎𝚜(𝚒𝚗𝚌𝚕𝚞𝚍𝚎 = [‘𝚝𝚢𝚙𝚎_𝟷’, ‘𝚝𝚢𝚙𝚎_𝟸’, … ‘𝚝𝚢𝚙𝚎_𝚗’]) means I want the
subset of my data frame WITH columns of 𝚝𝚢𝚙𝚎_𝟷, 𝚝𝚢𝚙𝚎_𝟸,…, 𝚝𝚢𝚙𝚎_𝚗.

view rawpandas_zip_files.py hosted with ❤ by GitHub

1 import pandas as pd

2

3 """

4 ------------ READ ZIP FILES -----------

5 """

6 # Case 1: read a single zip file

7 candidate_df_unzip = pd.read_csv('candidates.csv.zip', compression='zip')

8

9 # Case 2: read a file from a folder

10 from zipfile import ZipFile

11

12 # Read the file from a zip folder

13 sales_df = pd.read_csv(ZipFile("data.zip").open('data/sales_df.csv'))

14

15

16 """

17 ------------ WRITE ZIP FILES -----------

18 """

19 # Read data from internet

20 url = "https://raw.githubusercontent.com/keitazoumana/Fastapi-
tutorial/master/data/spam.csv"

21 spam_data = pd.read_csv(url, encoding="ISO-8859-1")

22

23 # Save it as a zip file

24 spam_data.to_csv("spam.csv.zip", compression="zip")

25

26 # Check the files sizes

27 from os import path

28 path.getsize('spam.csv') / path.getsize('spam.csv.zip')

https://gist.github.com/keitazoumana/bf95d27bc9cf2d82a3d0d77fdad4ab9c/raw/3601b97ebcc2acf5591d333aaa623f9f9a9640cc/pandas_zip_files.py
https://gist.github.com/keitazoumana/bf95d27bc9cf2d82a3d0d77fdad4ab9c#file-pandas_zip_files-py
https://github.com/

𝚍𝚏.𝚜𝚎𝚕𝚎𝚌𝚝_𝚍𝚝𝚢𝚙𝚎𝚜(𝚎𝚡𝚌𝚕𝚞𝚍𝚎 = [‘𝚝𝚢𝚙𝚎_𝟷’, ‘𝚝𝚢𝚙𝚎_𝟸’, … ‘𝚝𝚢𝚙𝚎_𝚗’]) means I want the
subset of my data frame WITHOUT columns of 𝚝𝚢𝚙𝚎_𝟷, 𝚝𝚢𝚙𝚎_𝟸,…, 𝚝𝚢𝚙𝚎_𝚗.

✨ Below is an illustration

select_subset_column_types.py

Columns subset selection (Image by Author)

6. Remove comments from Pandas dataframe column

Imagine that I want clean this data (candidates.csv) by removing comments from the
application date column. This can be done on the fly while loading your pandas
dataframe using the 𝙘𝙤𝙢𝙢𝙚𝙣𝙩 parameter as follow:

view rawselect_subset_column_types.py hosted with ❤ by GitHub

1 # Import pandas library

2 import pandas as pd

3

4 # Read my dataset

5 candidates_df = pd.read_csv("./data/candidates_data.csv")

6

7 # Check the data columns' types

8 candidates_df.dtypes

9

10 # Only select columns of type "object" & "datetime"

11 candidates_df.select_dtypes(include = ["object", "datetime64"])

12

13 # Exclude columns of type "datetime" & "int"

14 candidates_df.select_dtypes(exclude = ["int64", "datetime64"])

https://gist.github.com/keitazoumana/2ea1f5d53a125655e8806b73392e7e6c#file-select_subset_column_types-py
https://gist.github.com/keitazoumana/2ea1f5d53a125655e8806b73392e7e6c/raw/b454fc888b2a5118f2b7a63b775401022ce45c60/select_subset_column_types.py
https://gist.github.com/keitazoumana/2ea1f5d53a125655e8806b73392e7e6c#file-select_subset_column_types-py
https://github.com/

➡ 𝚌𝚕𝚎𝚊𝚗_𝚍𝚊𝚝𝚊 = 𝚙𝚍.𝚛𝚎𝚊𝚍_𝚌𝚜𝚟(𝚙𝚊𝚝𝚑_𝚝𝚘_𝚍𝚊𝚝𝚊, 𝙘𝙤𝙢𝙢𝙚𝙣𝙩=’𝚜𝚢𝚖𝚋𝚘𝚕’)

In my case, 𝙘𝙤𝙢𝙢𝙚𝙣𝙩=’#’ but it could be any other character (|, /, etc.) depending on
your case. An illustration is the first scenario.

✋🏽 Wait, what if I want to create a new column for those comments and still remove
them from the application date column? An illustration is the second scenario.

Remove comments from pandas dataframe (Image by Author)

view rawpandas_remove_comments.py hosted with ❤ by GitHub

1 # Import pandas library

2 import pandas as pd

3

4 # Read my messy dataset

5 messy_df = pd.read_csv("./data/candidates_data.csv")

6

7 # FIRST SCENARIO -> REMOVE COMMENTS

8 clean_df = pd.read_csv("./data/candidates_data.csv", comment='#')

9

10 # SECOND SCENARIO -> CREATE NEW COLUMN FOR COMMENTS

11 messy_df[['application_date', 'comment']] =
messy_df['application_date'].str.split('#', 1, expand=True)

https://gist.github.com/keitazoumana/58ce6adc553527195516b11879e5f97e/raw/b18bfbbeca4acb1088400d16b80e42ed05a216d4/pandas_remove_comments.py
https://gist.github.com/keitazoumana/58ce6adc553527195516b11879e5f97e#file-pandas_remove_comments-py
https://github.com/

7. Print Pandas dataframe in Tabular format from consol

❌ No, the application of the 𝚙𝚛𝚒𝚗𝚝() function to a pandas data frame does not
always render an output that is easy to read, especially for data frames with multiple
columns.

✅ If you want to get a nice console-friendly tabular output
Use the .𝚝𝚘_𝚜𝚝𝚛𝚒𝚗𝚐() function as illustrated below.

view rawpandas_to_string.py hosted with ❤ by GitHub

1 # Import pandas library

2 import pandas as pd

3

4 data_URL = "https://raw.githubusercontent.com/keitazoumana/Experimentation-
Data/main/vgsales.csv"

5

6 # Read your dataframe

7 video_game_data = pd.read_csv(data_URL)

8

9 """

10 Printing without to_string() function

11 """

12 print(video_game_data.head())

13

14 """

15 Printing with to_string() function

16 """

17 print(video_game_data.head().to_string())

https://gist.github.com/keitazoumana/e8c94a17e303207501f7593f9188c6da/raw/64eeb349181639b911b5a2372f93168590d1e788/pandas_to_string.py
https://gist.github.com/keitazoumana/e8c94a17e303207501f7593f9188c6da#file-pandas_to_string-py
https://github.com/

8. Highlight data points in Pandas

Applying colors to a pandas data frame can be a good way to emphasize certain data
points for quick analysis.

✅ This is where 𝚙𝚊𝚗𝚍𝚊𝚜.𝚜𝚝𝚢𝚕𝚎 module comes in handy. It has many features, but is
not limited to the followings:

✨ 𝚍𝚏.𝚜𝚝𝚢𝚕𝚎.𝚑𝚒𝚐𝚑𝚕𝚒𝚐𝚑𝚝_𝚖𝚊𝚡() to assign a color to the maximum value of each
column.

✨ 𝚍𝚏.𝚜𝚝𝚢𝚕𝚎.𝚑𝚒𝚐𝚑𝚕𝚒𝚐𝚑𝚝_𝚖in() to assign a color to the minimum value of each
column.

✨ 𝚍𝚏.𝚜𝚝𝚢𝚕𝚎.𝚊𝚙𝚙𝚕𝚢(𝚖𝚢_𝚌𝚞𝚜𝚝𝚘𝚖_𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗) to apply your custom function to your data
frame.

view rawhighlight_pandas_datapoints.py hosted with ❤ by GitHub

1 import pandas as pd

2

3 my_info = {

4 "Salary": [100000.2, 95000.9, 103000.2, 65984.1, 150987.08],

5 "Height": [6.5, 5.2, 5.59, 6.7, 6.92],

6 "weight": [185.23, 105.12, 110.3, 190.12, 200.59]

7 }

8 my_data = pd.DataFrame(my_info)

9

10 """

11 Function to highlight min and max

12 """

13

14 def highlight_min_max(data_frame, min_color, max_color):

15

16 # This first line create a styler object

17 final_data = data_frame.style.highlight_max(color = max_color)

18

19 # On this second line, no need to use ".style"

20 final_data = final_data.highlight_min(color = min_color)

21

22 return final_data

23

24 # Function to apply ORANGE to min and GREEN to max

25 highlight_min_max(my_data, min_color='orange', max_color='green')

26

27

28 """

29 Custom function: apply RED or GREEN whether data is below or above the mean.

30 """

31 def highlight_values(data_row):

32 low_value_color = "background-color:#C4606B ; color: white;"

33 high_value_color = "background-color: #C4DE6B; color: white;"

34 filter = data_row < data_row.mean()

35

36 return [low_value_color if low_value else high_value_color for low_value in filter]

37

38 # Application of my custom function to only 'Height' & 'weight'

39 my_data.style.apply(highlight_values, subset=['Height', 'weight'])

https://gist.github.com/keitazoumana/6cc7fdb7c4460b09adaeaf431ecb7957/raw/3e7de4f5fb2a8081706cc4b9c856d9656928b6c3/highlight_pandas_datapoints.py
https://gist.github.com/keitazoumana/6cc7fdb7c4460b09adaeaf431ecb7957#file-highlight_pandas_datapoints-py
https://github.com/

Highlight data points in Pandas (Image by Author)

9. Reduce decimal points in your data

Sometimes, very long decimal values in your data set do not provide significant
information and can be painful 🤯 to look at.

So, you might want to convert your data to about 2 to 3 decimal points to facilitate
your analysis.

✅ This is something you can perform using the 𝚙𝚊𝚗𝚍𝚊𝚜.𝙳𝚊𝚝𝚊𝙵𝚛𝚊𝚖𝚎.𝚛𝚘𝚞𝚗𝚍() function
as illustrated below.

Reduce decimal points in your data (Image by Author)

10. Replace some values in your data frame

You might want to replace some information in your data frame to keep it as up-to-
date as possible.

✅ This can be achieved using the Pandas 𝚍𝚊𝚝𝚊𝚏𝚛𝚊𝚖𝚎.𝚛𝚎𝚙𝚕𝚊𝚌𝚎() function as
illustrated below.

view rawlong_to_few_decimals.py hosted with ❤ by GitHub

1 long_decimals_info = {

2 "Salary": [100000.23400000, 95000.900300, 103000.2300535, 65984.14000450,
150987.080345],

3 "Height": [6.501050, 5.270000, 5.5900001050, 6.730001050, 6.92100050],

4 "weight": [185.23000059, 105.1200099, 110.350003, 190.12000000, 200.59000000]

5 }

6

7 long_decimals_df = pd.DataFrame(long_decimals_info)

8

9 """

10 Format the data with 2 decimal places

11 """

12 fewer_decimals_df = long_decimals_df.round(decimals=2)

13 fewer_decimals_df

https://gist.github.com/keitazoumana/cc0b5c43a78ef178ce4a2ea192a1462f/raw/55278bb4d58c1deb1cffa7d62896416773799292/long_to_few_decimals.py
https://gist.github.com/keitazoumana/cc0b5c43a78ef178ce4a2ea192a1462f#file-long_to_few_decimals-py
https://github.com/

Replace some values in your data frame (Image by Author)

11. Compare two data frames and get their differences

view rawpandas_replace_values.py hosted with ❤ by GitHub

1 import pandas as pd

2 import numpy as np

3

4 candidates_info = {

5 'Full_Name':["Aida Kone","Mamadou Diop","Ismael Camara","Aicha Konate",

6 "Fanta Koumare", "Khalil Cisse"],

7 'degree':['Master','MS','Bachelor', "PhD", "Masters", np.nan],

8 'From':[np.nan,"Dakar","Bamako", "Abidjan","Konakry", "Lomé"],

9 'Age':[23,26,19, np.nan,25, np.nan],

10 }

11

12 candidates_df = pd.DataFrame(candidates_info)

13

14 """

15 Replace Masters, Master by MS

16 """

17 degrees_to_replace = ["Master", "Masters"]

18 candidates_df.replace(to_replace = degrees_to_replace, value = "MS", inplace=True)

19

20 """

21 Replace all the NaN by "Missing"

22 """

23 candidates_df.replace(to_replace=np.nan, value = "Missing", inplace=True)

https://gist.github.com/keitazoumana/66d5d71a3ed6230fe72f4caee6e0ce1e/raw/2c2292976b0ed4d03225cda0cdff9562a16bc413/pandas_replace_values.py
https://gist.github.com/keitazoumana/66d5d71a3ed6230fe72f4caee6e0ce1e#file-pandas_replace_values-py
https://github.com/

Sometimes, when comparing two pandas data frames, not only do you want to know
if they are equivalent, but also where the difference lies if they are not equivalent.

✅ This is where the .𝚌𝚘𝚖𝚙𝚊𝚛𝚎() function comes in handy.

✨ It generates a data frame showing columns with differences side by side. Its
shape is different from (0, 0) only if the two data being compared are the same.

✨ If you want to show values that are equal, set the 𝚔𝚎𝚎𝚙_𝚎𝚚𝚞𝚊𝚕 parameter to 𝚃𝚛𝚞𝚎.
Otherwise, they are shown as 𝙽𝚊𝙽.

view rawpandas_compare_get_differences.py hosted with ❤ by GitHub

1 import pandas as pd

2 from pandas.testing import assert_frame_equal

3

4 candidates_df = pd.read_csv("data/candidates.csv")

5

6 """

7 Create a second dataframe by changing "Full_Name" & "Age" columns

8 """

9 candidates_df_test = candidates_df.copy()

10 candidates_df_test.loc[0, 'Full_Name'] = 'Aida Traore'

11 candidates_df_test.loc[2, 'Age'] = 28

12

13 """

14 Compare the two dataframes: candidates_df & candidates_df_test

15 """

16 # 1. Comparison showing only unmatching values

17 candidates_df.compare(candidates_df_test)

18

19 # 2. Comparison including similar values

20 candidates_df.compare(candidates_df_test, keep_equal=True)

https://gist.github.com/keitazoumana/369927f654a4623c758998d9b9bae75c/raw/c1f8b52e2b078148c56f0924f61e4b33fc2136ab/pandas_compare_get_differences.py
https://gist.github.com/keitazoumana/369927f654a4623c758998d9b9bae75c#file-pandas_compare_get_differences-py
https://github.com/

Compare two data frames and get their differences (Image by Author)

12. Get a subset of a very large dataset for quick analysis

Sometimes, we just need a subset of a very large dataset for quick analysis. One of
the approaches could be to read the whole data in memory before getting your
sample.

This can require a lot of memory depending on how big your data is. Also, it can
take significant time to read your data.

✅ You can use 𝚗𝚛𝚘𝚠𝚜 parameter in the pandas 𝚛𝚎𝚊𝚍_𝚌𝚜𝚟() function by specifying the
number of rows you want.

view rawselect_subset_while_reading.py hosted with ❤ by GitHub

1 # Pandas library

2 import pandas as pd

3

4 # Load execution time

5 %load_ext autotime

6

7 # File to get sample from: Size: 261,6 MB

8 large_data = "diabetes_benchmark_data.csv"

9

10 # Sample size of interest

11 sample_size = 400

12

13 """

14 Approach n°1: Read all the data in memory before getting the sample

15 """

16 read_whole_data = pd.read_csv(large_data)

17 sample_data = read_whole_data.head(sample_size)

18

19 """

20 Approach n°2: Read the sample on the fly

21 """

22 read_sample = pd.read_csv(large_data, nrows=sample_size)

https://gist.github.com/keitazoumana/02cd3f19a69a7e4cdd3a5f15863736a5/raw/f9166a7223beabb55f690b6dfa97719f84bff327/select_subset_while_reading.py
https://gist.github.com/keitazoumana/02cd3f19a69a7e4cdd3a5f15863736a5#file-select_subset_while_reading-py
https://github.com/

Get a subset of a very large dataset for quick analysis (Image by Author)

13. Transform your data frame from a wide to a long format

Sometimes it can be useful 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖 𝚢𝚘𝚞𝚛 𝚍𝚊𝚝𝚊𝚏𝚛𝚊𝚖𝚎 𝚏𝚛𝚘𝚖 𝚊 𝚠𝚒𝚍𝚎 𝚝𝚘 𝚊 𝚕𝚘𝚗𝚐 𝚏𝚘𝚛𝚖𝚊𝚝

which is more flexible for better analysis, especially when dealing with time series
data.

𝙒𝙝𝙖𝙩 𝙙𝙤 𝙮𝙤𝙪 𝙢𝙚𝙖𝙣 𝙗𝙮 𝙬𝙞𝙙𝙚 & 𝙡𝙤𝙣𝙜?

✨ Wide format is when you have a lot of columns.
✨ Long format on the other side is when you have a lot of rows.

✅ 𝙿𝚊𝚗𝚍𝚊𝚜.𝚖𝚎𝚕𝚝() is a perfect candidate for this task.

Below is an illustration

view rawlarge_to_long.py hosted with ❤ by GitHub

1 import pandas as pd

2

3 # My experimentation data

4 candidates= {

5 'Name':["Aida","Mamadou","Ismael","Aicha"],

6 'ID': [1, 2, 3, 4],

7 '2017':[85, 87, 89, 91],

8 '2018':[96, 98, 100, 102],

9 '2019':[100, 102, 106, 106],

10 '2020':[89, 95, 98, 100],

11 '2021':[94, 96, 98, 100],

12 '2022':[100, 104, 104, 107],

13 }

14 """

15 Data in wide format

16 """

17 salary_data = pd.DataFrame(candidates)

18

19 """

20 Transformation into the long format

21 """

22 long_format_data = salary_data.melt(id_vars=['Name', 'ID'],

23 var_name='Year', value_name='Salary(k$)')

24

https://gist.github.com/keitazoumana/725b0a91fcd45713959cd3be1fa8165d/raw/24fe14aa0a3aca9de32e03e477e558ceb2b1a3f4/large_to_long.py
https://gist.github.com/keitazoumana/725b0a91fcd45713959cd3be1fa8165d#file-large_to_long-py
https://github.com/

Transform your data frame from a wide to a long format (Image by Author)

14. Reduce the size of your Pandas data frame by ignoring the index

Do you know that you can reduce the size of your Pandas data frame by ignoring the
index when saving it?

✅ Something like 𝚒𝚗𝚍𝚎𝚡 = 𝙵𝚊𝚕𝚜𝚎 when saving the file.

Below is an illustration.

view rawingore_index.py hosted with ❤ by GitHub

1 import pandas as pd

2

3 # Read data from Github

4 URL = "https://raw.githubusercontent.com/keitazoumana/Experimentation-
Data/main/diabetes.csv"

5 data = pd.read_csv(URL)

6

7 # Create large data by repeating each row 10000 times

8 large_data = data.loc[data.index.repeat(10000)]

9

10 """

11 SAVE WITH INDEX

12 """

13 large_data.to_csv("large_data_with_index.csv")

14

15 # Check the size of the file

16 !ls -GFlash large_data_with_index.csv

17

18 """

19 SAVE WITHOUT INDEX

20 """

21 large_data.to_csv("large_data_without_index.csv", index = False)

22

23 # Check the size of the file

24 !ls -GFlash large_data_without_index.csv

https://gist.github.com/keitazoumana/f505f1eb7c1aa7949eb82808e0bfbf81/raw/4b2c7d12dbbf671ce30f630a66f974b552ef38cd/ingore_index.py
https://gist.github.com/keitazoumana/f505f1eb7c1aa7949eb82808e0bfbf81#file-ingore_index-py
https://github.com/

Reduce the size of your Pandas data frame by ignoring the index (Image by Author)

15. Parquet instead of CSV

Very often, I don’t manually look 👀 at the content of a CSV or Excel file that will be
used by Pandas for further analysis.

If that’s your case, maybe you should not use .CSV anymore and think of a better
option.

Especially if you are only concerned about

✨ Processing speed

✨ Speed in saving and loading

✨ Disk space occupied by the data frame

✅ In that case, .𝙥𝙖𝙧𝙦𝙪𝙚𝙩 format is your best option as illustrated below.

view rawcsv_vs_parquet.py hosted with ❤ by GitHub

1 import pandas as pd

2

3 # Read data from Github

4 URL = "https://raw.githubusercontent.com/keitazoumana/Experimentation-
Data/main/diabetes.csv"

5 data = pd.read_csv(URL)

6

7 # Create large data for experimentation by repeating each row 20.000 times

8 exp_data = data.loc[data.index.repeat(20000)]

9

10 """

11 EXPERIMENT WITH .CSV FORMAT

12 """

13 # Write Time

14 %%time

15 exp_data.to_csv("exp_data.csv", index=False)

16

17 # Read Time

18 %%time

19 csv_data = pd.read_csv("exp_data.csv")

20

21 # File Size

22 !ls -GFlash exp_data.csv

23

24 """

25 EXPERIMENT WITH .PARQUET FORMAT

26 """

27 # Write Time

28 %%time

29 exp_data.to_parquet('exp_data.parquet')

30

31 # Read Time

32 %%time

33 parquet_data = pd.read_parquet('exp_data.parquet')

34

35 # File Size

36 !ls -GFlash exp_data.parquet

https://gist.github.com/keitazoumana/607dd1a375e1c5cab4fbf5ac1241be6a/raw/651820e3bf2abf41aa7c0b31be1bac55282cc92c/csv_vs_parquet.py
https://gist.github.com/keitazoumana/607dd1a375e1c5cab4fbf5ac1241be6a#file-csv_vs_parquet-py
https://github.com/

Parquet instead of CSV (Image by Author)

16. Transform your data frame into a markdown

It is always better to print your data frame in a way that makes it easier to
understand.

✅ One way of doing that is to render it in a markdown format using the
.𝚝𝚘_𝚖𝚊𝚛𝚔𝚍𝚘𝚠𝚗() function.

💡 Below is an illustration

17. Format Date Time column

When loading Pandas dataframes, date columns are represented as 𝗼𝗯𝗷𝗲𝗰𝘁 by
default, which is not ❌ the correct date format.

✅ You can specify the target column in the 𝗽𝗮𝗿𝘀𝗲_𝗱𝗮𝘁𝗲𝘀 argument to get the correct
column type.

DateTime Formating

Python tips and tricks

1. Create a progress bar with tqdm and rich

Using the progress bar is beneficial when you want to have a visual status of a given
task.

#!pip -q install rich
from rich.progress import track
from tqdm import tqdm
import time

Implement the callback function

def compute_double(x):
 return 2*x

Create the progress bars

rich progress bar implementation

tqdm progress bar implementation

2. Get day, month, year, day of the week, the month of the year

view rawrich_progress_bar.py hosted with ❤ by GitHub

1 final_dict_doubles = {}

2

3 for i in track(range(20), description="Computing 2.n..."):

4 final_dict_doubles[f"Value = {i}"] = f"double = {compute_double(i)}"

5

6 # Sleep the process to highligh the progress

7 time.sleep(0.8)

view rawtqdm_progress_bar.py hosted with ❤ by GitHub

1 for i in tqdm(range(20), desc="Computing 2.n..."):

2 final_dict_doubles[f"Value = {i}"] = f"double = {compute_double(i)}"

3

4 # Sleep the process to highligh the progress

5 time.sleep(1)

https://gist.github.com/keitazoumana/1a09ff9d6144ec1653167261787ffc5a/raw/dfdf3a6def3cf2a571517162d6bd178bd5752b4c/rich_progress_bar.py
https://gist.github.com/keitazoumana/1a09ff9d6144ec1653167261787ffc5a#file-rich_progress_bar-py
https://github.com/
https://gist.github.com/keitazoumana/fc5b41d1e9466ee5628b8185c5e457c0/raw/5ca403ccdd5f11b9b48b2fec63f7b5489f80bb54/tqdm_progress_bar.py
https://gist.github.com/keitazoumana/fc5b41d1e9466ee5628b8185c5e457c0#file-tqdm_progress_bar-py
https://github.com/

Get day, month, year, day of the week, the month of the year (Image by author)

3. Smallest and largest values of a column

If you want to get the rows with the largest or lowest values for a given column, you
can use the following functions:

✨ 𝚍𝚏.𝚗𝚕𝚊𝚛𝚐𝚎𝚜𝚝(𝙽, “𝙲𝚘𝚕_𝙽𝚊𝚖𝚎”) → top 𝙽 rows based on 𝙲𝚘𝚕_𝙽𝚊𝚖𝚎

view rawuse_of_dt_accessor.py hosted with ❤ by GitHub

1 candidates= {

2 'Name':["Aida","Mamadou","Ismael","Aicha","Fatou", "Khalil"],

3 'Degree':['Master','Master','Bachelor', "PhD", "Master", "PhD"],

4 'From':["Abidjan","Dakar","Bamako", "Abidjan","Konakry", "Lomé"],

5 'Application_date': ['11/17/2022', '09/23/2022', '12/2/2021',

6 '08/25/2022', '01/07/2022', '12/26/2022']

7 }

8 candidates_df = pd.DataFrame(candidates)

9 candidates_df['Application_date'] = pd.to_datetime(candidates_df["Application_date"])

10

11 # GET the Values

12 application_date = candidates_df["Application_date"]

13

14 candidates_df["Day"] = application_date.dt.day

15 candidates_df["Month"] = application_date.dt.month

16 candidates_df["Year"] = application_date.dt.year

17 candidates_df["Day_of_week"] = application_date.dt.day_name()

18 candidates_df["Month_of_year"] = application_date.dt.month_name()

https://gist.github.com/keitazoumana/2faa96e1d9b631a953459861ca5198af/raw/aaa19c9aa17770ec2afcfafccc494c443d4d11d5/use_of_dt_accessor.py
https://gist.github.com/keitazoumana/2faa96e1d9b631a953459861ca5198af#file-use_of_dt_accessor-py
https://github.com/

✨ 𝚍𝚏.𝚗𝚜𝚖𝚊𝚕𝚕𝚎𝚜𝚝(𝙽, “𝙲𝚘𝚕_𝙽𝚊𝚖𝚎”) → 𝙽 smallest rows based on 𝙲𝚘𝚕_𝙽𝚊𝚖𝚎

✨ 𝙲𝚘𝚕_𝙽𝚊𝚖𝚎 is the name of the column you are interested in.

Smallest and largest values illustration (Image by Author)

4. Ignore the log output of the pip install command

Sometimes when installing a library from your jupyter notebook, you might not
want to have all the details about the installation process generated by the default
𝚙𝚒𝚙 𝚒𝚗𝚜𝚝𝚊𝚕𝚕 command.

✅ You can specify the -q or — quiet option to get rid of that information.

Below is an illustration 💡

pip install illustration (Animation by Author)

5. Run multiple commands in a single notebook cell

The exclamation mark ‘!’ is essential to successfully run a shell command from your
Jupyter notebook.

However, this approach can be quite repetitive 🔂 when dealing with multiple
commands or a very long and complicated one.

✅ A better way to tackle this issue is to use the %%𝐛𝐚𝐬𝐡 expression at the beginning
of your notebook cell.

💡 Below is an illustration

Illustration of %%bash statement (Animation by Autor)

6. Virtual environment.

A Data Science project can involve multiple dependencies, and dealing with all of
them can be a bit annoying. 🤯

✨ A good practice is to organize your project in a way that it can be easily shared
with your team members and reproduced with the least amount of effort.

✅ One way of doing this is to use virtual environments.

⚙️ 𝗖𝗿𝗲𝗮𝘁𝗲 𝘃𝗶𝗿𝘁𝘂𝗮𝗹 𝗲𝗻𝘃𝗶𝗿𝗼𝗻𝗺𝗲𝗻𝘁 𝗮𝗻𝗱 𝗶𝗻𝘀𝘁𝗮𝗹𝗹 𝗹𝗶𝗯𝗿𝗮𝗿𝗶𝗲𝘀.

→ Install the virtual environment module.
𝚙𝚒𝚙 𝚒𝚗𝚜𝚝𝚊𝚕𝚕 𝚟𝚒𝚛𝚝𝚞𝚊𝚕𝚎𝚗𝚟

→ Create your environment by giving a meaningful name.
𝚟𝚒𝚛𝚝𝚞𝚊𝚕𝚎𝚗𝚟 [𝚢𝚘𝚞𝚛_𝚎𝚗𝚟𝚒𝚛𝚘𝚗𝚖𝚎𝚗𝚝_𝚗𝚊𝚖𝚎]

→ Activate your environment.
𝚜𝚘𝚞𝚛𝚌𝚎 [𝚢𝚘𝚞𝚛_𝚎𝚗𝚟𝚒𝚛𝚘𝚗𝚖𝚎𝚗𝚝_𝚗𝚊𝚖𝚎]/𝚋𝚒𝚗/𝚊𝚌𝚝𝚒𝚟𝚊𝚝𝚎

→ Start installing the dependencies for your project.
𝚙𝚒𝚙 𝚒𝚗𝚜𝚝𝚊𝚕𝚕 𝚙𝚊𝚗𝚍𝚊𝚜

…

All this is great 👏🏼 , BUT… the virtual environment you just created is local to your
machine😏 .

𝙒𝙝𝙖𝙩 𝙩𝙤 𝙙𝙤?🤷🏻‍♂️

💡 You need to permanently save those dependencies in order to share them with
others using this command:

→ 𝚙𝚒𝚙 𝚏𝚛𝚎𝚎𝚣𝚎 > 𝚛𝚎𝚚𝚞𝚒𝚛𝚎𝚖𝚎𝚗𝚝𝚜.𝚝𝚡𝚝

This will create 𝚛𝚎𝚚𝚞𝚒𝚛𝚎𝚖𝚎𝚗𝚝𝚜.𝚝𝚡𝚝 file containing your project dependencies.

🔚 Finally, anyone can install the exact same dependencies by running this
command:
→ 𝚙𝚒𝚙 𝚒𝚗𝚜𝚝𝚊𝚕𝚕 -𝚛 𝚛𝚎𝚚𝚞𝚒𝚛𝚎𝚖𝚎𝚗𝚝𝚜.𝚝𝚡𝚝

7. Run multiple metrics at once

Scikit learn metrics

8. Chain multiple lists as a single sequence

You can use a single for loop to iterate through multiple lists as a single sequence
🔂 .

✅ This can be achieved using the 𝚌𝚑𝚊𝚒𝚗() ⛓ function from Python 𝗶𝘁𝗲𝗿𝘁𝗼𝗼𝗹𝘀 module.

view rawmultiple_metrics.py hosted with ❤ by GitHub

1 """

2 Individual imports

3 """

4 from sklearn.metrics import precision_score, recall_score, f1_score

5

6 y_true = [0, 1, 2, 0, 1, 2]

7 y_pred = [0, 2, 1, 0, 0, 1]

8

9 print("Precision: ", precision_score(y_true, y_pred, average='macro'))

10 print("Recall: ", recall_score(y_true, y_pred, average='macro'))

11 print("F1 Score: ", f1_score(y_true, y_pred, average='macro'))

12

13

14 """

15 Single Line import

16 """

17 from sklearn.metrics import precision_recall_fscore_support

18

19 precision, recall, f1_score, _ = precision_recall_fscore_support(y_true,

20 y_pred,

21 average='macro')

22 print(f"Precision: {precision}")

23 print(f"Recall: {recall}")

24 print(f"F1 Score: {f1_score}")

https://gist.github.com/keitazoumana/d8c2ce7ec3acc7a6144142ae166df28d/raw/4ed481459c7af58d26ab16a06a6427880bb75580/multiple_metrics.py
https://gist.github.com/keitazoumana/d8c2ce7ec3acc7a6144142ae166df28d#file-multiple_metrics-py
https://github.com/

List chaining

9. Pretty print of JSON data

❓ Have ever wanted to print your JSON data in a correct indented format for better
visualization?

✅ The indent parameter of the dumps() method can be used to specify the
indentation level of your formatted string output.

Pretty print your JSON data

10. Unit testing

Do you Test Your Code? 🧪

I mean do you perform Unit Testing?

No matter if you are Data Scientist or a Software Developer, Unit testing is an
important step to make sure the features being implemented meet the expected
behavior.

This is undoubtedly beneficial on many levels:

✨ Better quality 💎 code.

✨ Allows simpler and more agile code when adding new features.

✨ Reduces cost 💰 by saving dev time ⏳ and avoiding later stages of error
discovery.

✨ Much More …

✅ With 𝘂𝗻𝗶𝘁𝘁𝗲𝘀𝘁, you can perform unit testing like a pro 😎

Below is an illustration 💡

Unit test illustration

11. Iterate over multiple lists

Iterating over multiple lists simultaneously can be beneficial when trying to map ⛓
information from those lists.

✅ My go-to approach is the Python 𝘇𝗶𝗽 function.

Below is an illustration 💡

Iterate over multiple lists

12. Alternative to nested for loops

Raise your hand if you have once used nested loops 🔁 🙋🏾‍♂️

This is most of the time inevitable when a program gets complicated.

However, using nested loops get makes your program harder to read 🔬 and
maintain 🙅🏽‍♂️ .

✅ You can use the Python built-in 𝗽𝗿𝗼𝗱𝘂𝗰𝘁() function instead.

Below is an illustration 💡

Solution to nested for loops

13. Text preprocessing made easy

Text ␂␃ preprocessing has never been easy.

❓How many functions or regular expressions do you have to write to perform basic
text preprocessing tasks like:

✨ Fixing Unicode

✨ Removing URLs

✨ Getting rid of digits, punctuation, etc?

Those tasks are not only time-consuming ⏰ but also may increase in complexity 📈
depending on the text.

✅ Using the 𝗰𝗹𝗲𝗮𝗻-𝘁𝗲𝘅𝘁 Python library can take away all that burden.

Below is an illustration 💡

Text preprocessing illustration (Image by Author)

Conclusion
Thank you for reading! 🎉 🍾

I hope you found this list of Python and Pandas tricks helpful! Keep an eye on here,
because the content will be maintained with more tricks on a daily basis.

Also, If you like reading my stories and wish to support my writing, consider
becoming a Medium member. With a $ 5-a-month commitment, you unlock
unlimited access to stories on Medium.

https://zoumanakeita.medium.com/membership

